You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (1 to 25 of 2520)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/beziau_2012_the-new-rising-of-the-square-of_1dvf8i5fn_p-13_1ee7qv4tp The New Rising of the Square of Opposition, p. 13, by Beziau, Jean-Yves 2012 Sigma-6 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-161_1eed4o8cb Oppositions and Opposites, p. 161, by Schang, Fabien 2012 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-161_1eed4tgbc Oppositions and Opposites, p. 161, by Schang, Fabien 2012 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-161_1eed53jj2 Oppositions and Opposites, p. 161, by Schang, Fabien 2012 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-164_1eed6oqmu Oppositions and Opposites, p. 164, by Schang, Fabien 2012 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-164_1eed6tpho Oppositions and Opposites, p. 164, by Schang, Fabien 2012 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-164_1eed72ju2 Oppositions and Opposites, p. 164, by Schang, Fabien 2012 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/gildin_1970_aristotle-and-the-moral-square-of_1dnandt4a_p-102_1eedpvbff Aristotle and the Moral Square of Opposition, p. 102, by Gildin, Hilail 1970 Non-Sigma 3 Two Dimensional Shape
http://purl.org/lg/diagrams/blanche_1957_sur-la-structuration-du-tableau-des_1dogtdotb_p-18_1ei7jsna2 Sur La Structuration du Tableau Des Connectifs Interpropositionnels Binaires, p. 18, by Blanché, Robert 1957 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/blanche_1969_sur-le-systeme-des-connecteurs_1dogusgq1_p-144_1ei7kb3nh Sur le système des connecteurs interpropositionnels, p. 144, by Blanché, Robert 1969 Sigma-5 Graph 4 Two Dimensional Shape
http://purl.org/lg/diagrams/luzeaux-et-al-_2008_logical-extensions-of_1dv12vgm7_p-179_1ecktdkkh Logical Extensions of Aristotle's Square, p. 179, by Luzeaux, Dominique; Sallantin, Jean; Dartnell, Christopher 2008 Jacoby-Sesmat-Blanché Sigma-3 4 Triangular Prism
http://purl.org/lg/diagrams/luzeaux-et-al-_2008_logical-extensions-of_1dv12vgm7_p-179_1ecktisvp Logical Extensions of Aristotle's Square, p. 179, by Luzeaux, Dominique; Sallantin, Jean; Dartnell, Christopher 2008 Jacoby-Sesmat-Blanché Sigma-3 4 Triangular Prism
http://purl.org/lg/diagrams/angot-pellissier_2008_-setting-n-opposition_1dr1l86qf_p-240_1ede03uuk "Setting" n-Opposition, p. 240, by Pellissier, Régis 2008 Non-Sigma 4 Triangular Prism
http://purl.org/lg/diagrams/horn_2014_the-roots-of-scalar-implicature_1e0d9oh9r_p-21_1eag1lg8m The Roots of (Scalar) Implicature, p. 21, by Horn, Laurence 2014 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/bazhanov_2008_non-classical-stems-from-classical-n_1dvdnqe92_p-74_1eci6edg3 Non-Classical Stems from Classical: N. A. Vasiliev's Approach to Logic and his Reassessment of the Square of Opposition, p. 74, by Bazhanov, Valentin A. 2008 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/vrancken-et-al-_1759_dialectica_1eb4plkra_fol-75v_1eclk6n38 Dialectica, fol. 75v, by Vrancken, Joannes Antonius; Beauvoix, Lambert-Jean 1759 Non-Sigma 4 Triangle
http://purl.org/lg/diagrams/vandungen-et-al-_1759_dialectica_1eb4p778n_fol-94v_1ecnds397 Dialectica, fol. 94v, by Vandungen, Augustinus; Beauvoix, Lambert-Jean 1759 Non-Sigma 4 Triangle
http://purl.org/lg/diagrams/simons_1993_opposition-obversion-and-duality_1e29aqjcb_p-111_1ecniautr Opposition, Obversion, and Duality, p. 111, by Simons, Peter 1993 Jacoby-Sesmat-Blanché Sigma-3 3 Triangle
http://purl.org/lg/diagrams/schmidt-et-al-_2008_-at-least-one-problem-with_1drl8st23_p-219_1ecpck8l5 "At least one" problem with "some" formal reasoning paradigms, p. 219, by Schmidt, James R.; Thompson, Valerie A. 2008 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-power-of-the-hexagon_1dnl9kh35_p-9_1ecuqqh78 The Power of the Hexagon, p. 9, by Beziau, Jean-Yves 2012 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-power-of-the-hexagon_1dnl9kh35_p-10_1ecv27l5e The Power of the Hexagon, p. 10, by Beziau, Jean-Yves 2012 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-power-of-the-hexagon_1dnl9kh35_p-10_1ecv2c79l The Power of the Hexagon, p. 10, by Beziau, Jean-Yves 2012 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-power-of-the-hexagon_1dnl9kh35_p-10_1ecv2hfur The Power of the Hexagon, p. 10, by Beziau, Jean-Yves 2012 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-power-of-the-hexagon_1dnl9kh35_p-11_1ecv3hh9j The Power of the Hexagon, p. 11, by Beziau, Jean-Yves 2012 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-power-of-the-hexagon_1dnl9kh35_p-11_1ecv3lr1g The Power of the Hexagon, p. 11, by Beziau, Jean-Yves 2012 Contrariety 3-clique 3 Triangle
↑ Back to top ↑