You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (1 to 25 of 3256)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-275_1g7f8n06d Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 275, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-276_1g7f8tr07 Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 276, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-277_1g7f96r85 Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 277, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-278_1g7f9cc42 Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 278, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-283_1g7h2bl46 Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 283, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-283_1g7h2jq7a Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 283, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-285_1g7h2rd4v Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 285, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/cavaliere_2017_iconic-and-dynamic-models-to_1dvi3a0f7_p-286_1g7h34gjg Iconic and Dynamic Models to Represent "Distinctive" Predicates: The Octagonal Prism and the Complex Tetrahedron of Opposition, p. 286, by Cavaliere, Ferdinando 2017
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-77_1g7s44u6r Why the Logical Hexagon?, p. 77, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-82_1g7uli9q8 Why the Logical Hexagon?, p. 82, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-82_1g7uo5n21 Why the Logical Hexagon?, p. 82, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-84_1g99nn8u5 Why the Logical Hexagon?, p. 84, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-86_1g9d80b1d Why the Logical Hexagon?, p. 86, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-86_1g9d859ca Why the Logical Hexagon?, p. 86, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-87_1g9daqm5q Why the Logical Hexagon?, p. 87, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-94_1g9f7j822 Why the Logical Hexagon?, p. 94, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-99_1g9hm43r2 Why the Logical Hexagon?, p. 99, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-99_1g9hotrrb Why the Logical Hexagon?, p. 99, by Moretti, Alessio 2012
http://purl.org/lg/diagrams/van-gobbelschroije-et-al-_1763_dialectica_1eb4nni5q_fol-61v_1ecliberb Dialectica, fol. 61v, by van Gobbelschroije, Michael Josephus; Beauvoix, Lambert-Jean 1763 Classical Sigma-2 3 Circle
http://purl.org/lg/diagrams/van-gobbelschroije-et-al-_1763_dialectica_1eb4nni5q_fol-62_1eclimfq4 Dialectica, fol. 62, by van Gobbelschroije, Michael Josephus; Beauvoix, Lambert-Jean 1763 Classical Sigma-2 3 Circle
http://purl.org/lg/diagrams/vandungen-et-al-_1759_dialectica_1eb4p778n_fol-104v_1eclq2j9g Dialectica, fol. 104v, by Vandungen, Augustinus; Beauvoix, Lambert-Jean 1759 Classical Sigma-2 3 Circle
http://purl.org/lg/diagrams/vandungen-et-al-_1759_dialectica_1eb4p778n_fol-92v_1ecndne3f Dialectica, fol. 92v, by Vandungen, Augustinus; Beauvoix, Lambert-Jean 1759 Non-Sigma 5 Circle
http://purl.org/lg/diagrams/vandungen-et-al-_1759_dialectica_1eb4p778n_fol-107v_1ecndvvqf Dialectica, fol. 107v, by Vandungen, Augustinus; Beauvoix, Lambert-Jean 1759 Classical Sigma-2 3 Circle
http://purl.org/lg/diagrams/vandungen-et-al-_1759_dialectica_1eb4p778n_fol-108_1ecne40er Dialectica, fol. 108, by Vandungen, Augustinus; Beauvoix, Lambert-Jean 1759 Classical Sigma-2 3 Circle
http://purl.org/lg/diagrams/apuleius_975_peri-hermeneias_1ed1er1pj_fol-39v_1ed1fi8s9 Peri hermeneias, fol. 39v, by Apuleius, Lucius 975–1025 Classical Sigma-2 3 Circle
↑ Back to top ↑