You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (1 to 25 of 2123)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/philipps_2012_von-deontischen-quadraten-kuben_1eal76p65_p-79_1eb12177b Von deontischen Quadraten - Kuben - Hyperkuben, p. 79, by Philipps, Lothar 2012 Sigma-8 Graph Three Dimensional Shape
http://purl.org/lg/diagrams/philipps_2012_von-deontischen-quadraten-kuben_1eal76p65_p-80_1eb127og7 Von deontischen Quadraten - Kuben - Hyperkuben, p. 80, by Philipps, Lothar 2012 Sigma-8 Graph Square
http://purl.org/lg/diagrams/menne_1954_logik-und-existenz_1dpkupj5q_p-105_1eb4f7dva Logik und Existenz. Eine logistische Analyse der kategorischen Syllogismusfunktoren und das Problem der Nullklasse, p. 105, by Menne, Albert 1954 Non-Sigma Rectangle
http://purl.org/lg/diagrams/akcelik_2014_a-solution-to-the-knowability-paradox_1ebubrcq6_p-104_1ec2md666 A solution to the knowability paradox and the paradox of idealization in modal epistemic languages, p. 104, by Akçelik, Oğuz 2014 Logical Graph Rectangle
http://purl.org/lg/diagrams/pizzi_2008_aristotle-s-cubes-and-consequential_1dr1kdtju_p-148_1eci8tmma Aristotle's Cubes and Consequential Implication, p. 148, by Pizzi, Claudio 2008 Sigma-4 Graph Cube
http://purl.org/lg/diagrams/pizzi_2008_aristotle-s-cubes-and-consequential_1dr1kdtju_p-149_1eci9810h Aristotle's Cubes and Consequential Implication, p. 149, by Pizzi, Claudio 2008 Sigma-4 Graph Cube
http://purl.org/lg/diagrams/pizzi_2008_aristotle-s-cubes-and-consequential_1dr1kdtju_p-149_1eci9gc7c Aristotle's Cubes and Consequential Implication, p. 149, by Pizzi, Claudio 2008 Sigma-4 Graph Cube
http://purl.org/lg/diagrams/pizzi_2008_aristotle-s-cubes-and-consequential_1dr1kdtju_p-150_1eci9pftd Aristotle's Cubes and Consequential Implication, p. 150, by Pizzi, Claudio 2008 Sigma-4 Graph Cube
http://purl.org/lg/diagrams/pizzi_2008_aristotle-s-cubes-and-consequential_1dr1kdtju_p-151_1eci9v25c Aristotle's Cubes and Consequential Implication, p. 151, by Pizzi, Claudio 2008 Sigma-4 Graph Cube
http://purl.org/lg/diagrams/pizzi_2008_aristotle-s-cubes-and-consequential_1dr1kdtju_p-152_1ecia38p8 Aristotle's Cubes and Consequential Implication, p. 152, by Pizzi, Claudio 2008 Sigma-4 Graph Cube
http://purl.org/lg/diagrams/luzeaux-et-al-_2008_logical-extensions-of_1dv12vgm7_p-184_1ecku6vh5 Logical Extensions of Aristotle's Square, p. 184, by Luzeaux, Dominique; Sallantin, Jean; Dartnell, Christopher 2008 Sigma-7 Graph Decagon
http://purl.org/lg/diagrams/mercier_1912_a-new-logic_1e41rq55l_p-178_1ecn3cu61 A New Logic, p. 178, by Mercier, Charles 1912 Non-Sigma Square
http://purl.org/lg/diagrams/mercier_1912_a-new-logic_1e41rq55l_p-179_1ecn3k1nm A New Logic, p. 179, by Mercier, Charles 1912 Non-Sigma Square
http://purl.org/lg/diagrams/mercier_1912_a-new-logic_1e41rq55l_p-179_1ecn3oh3c A New Logic, p. 179, by Mercier, Charles 1912 Non-Sigma Square
http://purl.org/lg/diagrams/mercier_1912_a-new-logic_1e41rq55l_p-180_1ecn4pdmn A New Logic, p. 180, by Mercier, Charles 1912 Non-Sigma Square
http://purl.org/lg/diagrams/englebretsen_1984_quadratum-auctum_1dubbbml7_p-324_1edtkcsun Quadratum auctum, p. 324, by Englebretsen, George 1984 Non-Sigma Hexagon
http://purl.org/lg/diagrams/englebretsen_1988_preliminary-notes-on-a-new-modal_1dubd5s9d_p-387_1ee0a99ev Preliminary notes on a new modal syllogistic, p. 387, by Englebretsen, George 1988 Sigma-6 Graph Octagon
http://purl.org/lg/diagrams/englebretsen_1988_preliminary-notes-on-a-new-modal_1dubd5s9d_p-389_1ee0amsta Preliminary notes on a new modal syllogistic, p. 389, by Englebretsen, George 1988 Sigma-6 Graph Octagon
http://purl.org/lg/diagrams/englebretsen_1988_preliminary-notes-on-a-new-modal_1dubd5s9d_p-390_1ee0aqmh1 Preliminary notes on a new modal syllogistic, p. 390, by Englebretsen, George 1988 Sigma-10 Graph Octagon
http://purl.org/lg/diagrams/kearns_2012_two-concepts-of-opposition-multiple_1dvf95ch9_p-126_1eeap9a9o Two Concepts of Opposition, Multiple Squares, p. 126, by Kearns, John T. 2012 Non-Sigma Triangle
http://purl.org/lg/diagrams/kearns_2012_two-concepts-of-opposition-multiple_1dvf95ch9_p-127_1eeapkuhn Two Concepts of Opposition, Multiple Squares, p. 127, by Kearns, John T. 2012 Non-Sigma Triangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-206_1eef4uen5 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 206, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-206_1eef54t87 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 206, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef6h0oq No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef6lgte No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Non-Sigma Triangle
↑ Back to top ↑