You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (4139 to 4163 of 6251)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-179_1j209e76p Universal Logic as a Science of Patterns, p. 179, by Gaines, Brian R. 2015
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j209iosd Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Triangle
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j209mgs3 Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Digon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j209qadk Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Digon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j209tsjn Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Digon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20a23o7 Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Digon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20a5s6a Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Digon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20a9mfe Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Digon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20afv88 Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Pentagon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20aj7vi Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Pentagon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20ancq5 Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Pentagon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20arm3k Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Pentagon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20augrp Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Pentagon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-180_1j20b174t Universal Logic as a Science of Patterns, p. 180, by Gaines, Brian R. 2015 Pentagon
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-185_1j20ctij7 Universal Logic as a Science of Patterns, p. 185, by Gaines, Brian R. 2015 Triangle
http://purl.org/lg/diagrams/gaines_2015_universal-logic-as-a-science-of_1dvf0db11_p-185_1j20d0onn Universal Logic as a Science of Patterns, p. 185, by Gaines, Brian R. 2015 Triangle
http://purl.org/lg/diagrams/guitart_2015_hexagonal-logic-of-the-field-usd_1dvf0ku3r_p-194_1j20d40ql Hexagonal Logic of the Field $\mathbb{F}_8$ as a Boolean Logic with Three Involutive Modalities, p. 194, by Guitart, René 2015 Rectangular Cuboid
http://purl.org/lg/diagrams/guitart_2015_hexagonal-logic-of-the-field-usd_1dvf0ku3r_p-194_1j20d7fgc Hexagonal Logic of the Field $\mathbb{F}_8$ as a Boolean Logic with Three Involutive Modalities, p. 194, by Guitart, René 2015 Cube
http://purl.org/lg/diagrams/guitart_2015_hexagonal-logic-of-the-field-usd_1dvf0ku3r_p-195_1j20ddr1m Hexagonal Logic of the Field $\mathbb{F}_8$ as a Boolean Logic with Three Involutive Modalities, p. 195, by Guitart, René 2015 Hexagon
http://purl.org/lg/diagrams/guitart_2015_hexagonal-logic-of-the-field-usd_1dvf0ku3r_p-195_1j20dgvkn Hexagonal Logic of the Field $\mathbb{F}_8$ as a Boolean Logic with Three Involutive Modalities, p. 195, by Guitart, René 2015 Hexagon
http://purl.org/lg/diagrams/lenzen_2015_caramuel-and-the-quantification-of-the_1dvf1gm20_p-363_1j20dkbk4 Caramuel and the "Quantification of the Predicate", p. 363, by Lenzen, Wolfgang 2015 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/lenzen_2015_caramuel-and-the-quantification-of-the_1dvf1gm20_p-371_1j20dot92 Caramuel and the "Quantification of the Predicate", p. 371, by Lenzen, Wolfgang 2015 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/smessaert-et-al-_2015_beziau-s-contributions-to_1dvehlp8g_p-487_1j20dv7qu Béziau's Contributions to the Logical Geometry of Modalities and Quantifiers, p. 487, by Smessaert, Hans; Demey, Lorenz 2015
http://purl.org/lg/diagrams/smessaert-et-al-_2015_beziau-s-contributions-to_1dvehlp8g_p-487_1j20e4kdl Béziau's Contributions to the Logical Geometry of Modalities and Quantifiers, p. 487, by Smessaert, Hans; Demey, Lorenz 2015
http://purl.org/lg/diagrams/smessaert-et-al-_2015_beziau-s-contributions-to_1dvehlp8g_p-490_1j20e8bbf Béziau's Contributions to the Logical Geometry of Modalities and Quantifiers, p. 490, by Smessaert, Hans; Demey, Lorenz 2015
↑ Back to top ↑