You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (26 to 50 of 5387)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/smessaert-et-al-_2017_duality-patterns-in-2-pcd_1dnpb972e_p-255_1ga0v9r07 Duality Patterns in 2-PCD Fragments, p. 255, by Smessaert, Hans; Demey, Lorenz 2017 Sigma-3 Graph 3–8 Octagon
http://purl.org/lg/diagrams/smessaert-et-al-_2017_duality-patterns-in-2-pcd_1dnpb972e_p-255_1ga1ncemg Duality Patterns in 2-PCD Fragments, p. 255, by Smessaert, Hans; Demey, Lorenz 2017 Sigma-3 Graph 3–8 Octagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-258_1i50s78u5 The Geometry of Logical Opposition, p. 258, by Moretti, Alessio 2009 Sigma-7 Clique 7–8 Tetradecagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-260_1i52u2qv4 The Geometry of Logical Opposition, p. 260, by Moretti, Alessio 2009 Sigma-7 Ladder 8 Rectangle
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-260_1i52u6ff6 The Geometry of Logical Opposition, p. 260, by Moretti, Alessio 2009 Sigma-7 Ladder 8 Rectangle
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-272_1i5326a7l The Geometry of Logical Opposition, p. 272, by Moretti, Alessio 2009 Sigma-7 Clique 7–8 Tetradecagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-272_1i532njuu The Geometry of Logical Opposition, p. 272, by Moretti, Alessio 2009 8 Tetradecagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-292_1i5aj60rt The Geometry of Logical Opposition, p. 292, by Moretti, Alessio 2009 Degenerate Sigma-3 with Unconnectedness 12 8 Digon
http://purl.org/lg/diagrams/johnson_1921_logic-part-i_1drva2njf_p-142_1eag5in2f Logic. Part I, p. 142, by Johnson, W. E. 1921 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/dopp_1949_lecons-de-logique-formelle-premiere_1drvd0qab_p-128_1ec4sij6p Leçons de logique formelle. Première partie. Logique ancienne - la logique des jugements prédicatifs, p. 128, by Dopp, Joseph 1949 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/dopp_1960_formal-logic_1drvd55ad_p-141_1ec56rg22 Formal Logic, p. 141, by Dopp, Joseph; Ramirez, J. Roland E. (trans.); Sweeney, Robert D. (trans.) 1960 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/keynes_1906_studies-and-exercises-in-formal-logic_1drvcsdkg_p-144_1eca9nhr2 Studies and Exercises in Formal Logic (Fourth Edition), p. 144, by Keynes, J. N. 1906 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/keynes_1894_studies-and-exercises-in-formal-logic_1drvcfk8m_p-113_1ecac8hm5 Studies and Exercises in Formal Logic (Third Edition), p. 113, by Keynes, J. N. 1894 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/hacker_1975_the-octagon-of-opposition_1dqne7cf5_p-353_1ecb5eveo The octagon of opposition, p. 353, by Hacker, Edward A. 1975 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/thompson_1982_syllogisms-using-few-many-and-most_1e49qmufg_p-77_1ed3eso05 Syllogisms Using "Few", "Many", and "Most", p. 77, by Thompson, Bruce 1982 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/castro-manzano_2019_an-intermediate-term-functor_1e418pm8q_p-21_1edpouikg An intermediate term functor logic, p. 21, by Castro-Manzano, José Martín 2019 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/jacquette_2012_thinking-outside-the-square-of_1dvf8tgcb_p-88_1eead1pq5 Thinking Outside the Square of Opposition Box, p. 88, by Jacquette, Dale 2012 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-248_1eeg6pc3a Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 248, by Cavaliere, Ferdinando 2012 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/libert_2012_hypercubes-of-duality_1dvfalq81_p-297_1eei8fc6m Hypercubes of Duality, p. 297, by Libert, Thierry 2012 Keynes-Johnson Sigma-4 7 Rectangular Cuboid
http://purl.org/lg/diagrams/lenzen_2012_how-to-square-knowledge-and-belief_1dvfao1oa_p-310_1eeiisrsf How to Square Knowledge and Belief, p. 310, by Lenzen, Wolfgang 2012 Sigma-6 Ladder 7 Rectangle
http://purl.org/lg/diagrams/amgoud-et-al-_2013_a-formal-concept-view-of_1e45so9pc_p-9_1ehn8hfbq A Formal Concept View of Abstract Argumentation, p. 9, by Amgoud, Leila; Prade, Henri 2013 Keynes-Johnson Sigma-4 7 Cube
http://purl.org/lg/diagrams/demey-et-al-_2016_metalogical-decorations-of_1dnpb0l3b_p-269_1ejfrt6bo Metalogical Decorations of Logical Diagrams, p. 269, by Demey, Lorenz; Smessaert, Hans 2016 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/demey-et-al-_2016_metalogical-decorations-of_1dnpb0l3b_p-280_1ek72b3nt Metalogical Decorations of Logical Diagrams, p. 280, by Demey, Lorenz; Smessaert, Hans 2016 Keynes-Johnson Sigma-4 7 Rectangular Cuboid
http://purl.org/lg/diagrams/horn_1996_exclusive-company-only-and-the-dynamics_1e00id26f_p-13_1elcm3vkj Exclusive Company: Only and the Dynamics of Vertical Inference, p. 13, by Horn, Laurence 1996 Keynes-Johnson Sigma-4 7 Rectangular Cuboid
http://purl.org/lg/diagrams/murinova-et-al-_2016_syllogisms-and-5-square-of_1e66ij7r7_p-351_1empj19av Syllogisms and 5-Square of Opposition with Intermediate Quantifiers in Fuzzy Natural Logic, p. 351, by Murinová, Petra; Novák, Vilém 2016 Non-Sigma 7 Rectangle
↑ Back to top ↑