You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (1 to 25 of 5293)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-99_1g9hmdj8k Why the Logical Hexagon?, p. 99, by Moretti, Alessio 2012 Traditional Aristotelian Graph (Sigma) Three Dimensional Shape
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-309_1i5ivel8l The Geometry of Logical Opposition, p. 309, by Moretti, Alessio 2009 Traditional Aristotelian Graph (Sigma) 22 Octagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-309_1i5ivuk8j The Geometry of Logical Opposition, p. 309, by Moretti, Alessio 2009 Traditional Aristotelian Graph (Sigma) 22 Octagon
http://purl.org/lg/diagrams/johnson_1921_logic-part-i_1drva2njf_p-31_1eag4m3jf Logic. Part I, p. 31, by Johnson, W. E. 1921 Subcontrariety 4-clique 4 Square
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-394_1eihllapj Was Lewis Carroll an Amazing Oppositional Geometer?, p. 394, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-393_1eimnse5u Was Lewis Carroll an Amazing Oppositional Geometer?, p. 393, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Triangle
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-393_1eimo01vk Was Lewis Carroll an Amazing Oppositional Geometer?, p. 393, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Triangle
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-393_1eimo3l3a Was Lewis Carroll an Amazing Oppositional Geometer?, p. 393, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-395_1eimoi58s Was Lewis Carroll an Amazing Oppositional Geometer?, p. 395, by Moretti, Alessio 2014 Subcontrariety 4-clique 4–5 Tetrahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdkd9j4 Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Subcontrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdknpl2 Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Subcontrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/angot-pellissier_2008_-setting-n-opposition_1dr1l86qf_p-237_1eddqc9fa "Setting" n-Opposition, p. 237, by Pellissier, Régis 2008 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-new-rising-of-the-square-of_1dvf8i5fn_p-9_1ee7mrcj7 The New Rising of the Square of Opposition, p. 9, by Beziau, Jean-Yves 2012 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-149_1eeco7j3r Oppositions and Opposites, p. 149, by Schang, Fabien 2012 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/costa-leite_2018_oppositions-in-a-line-segment_1dnp0puec_p-190_1gaegv244 Oppositions in a Line Segment, p. 190, by Costa-Leite, Alexandre 2018 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-252_1eeg6vbmc Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 252, by Cavaliere, Ferdinando 2012 Sigma-9 Graph Rectangle
http://purl.org/lg/diagrams/chatti_2016_les-oppositions-modales-dans-la_1e1p71eee_p-24_1en6k1iag Les Oppositions Modales dans la Logique d'Al Fārābi, p. 24, by Chatti, Saloua 2016 Sigma-9 Graph Octagon
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-102_1g9hpi3dv Why the Logical Hexagon?, p. 102, by Moretti, Alessio 2012 Sigma-9 Clique 9–10 Heptagon
http://purl.org/lg/diagrams/philipps_2012_von-deontischen-quadraten-kuben_1eal76p65_p-79_1eb12177b Von deontischen Quadraten - Kuben - Hyperkuben, p. 79, by Philipps, Lothar 2012 Sigma-8 Graph Three Dimensional Shape
http://purl.org/lg/diagrams/philipps_2012_von-deontischen-quadraten-kuben_1eal76p65_p-80_1eb127og7 Von deontischen Quadraten - Kuben - Hyperkuben, p. 80, by Philipps, Lothar 2012 Sigma-8 Graph Square
http://purl.org/lg/diagrams/garcia-cruz_2017_aristotelian-relations-in-pdl-the_1dnch8op5_p-411_1eu1cukef Aristotelian Relations in PDL: The Hypercube of Dynamic Oppositions, p. 411, by García-Cruz, José David 2017 Sigma-8 Graph Hexadecagon
http://purl.org/lg/diagrams/garcia-cruz_2017_aristotelian-relations-in-pdl-the_1dnch8op5_p-409_1eu1dhono Aristotelian Relations in PDL: The Hypercube of Dynamic Oppositions, p. 409, by García-Cruz, José David 2017 Sigma-8 Graph Cube
http://purl.org/lg/diagrams/wessels_2002_die-gute-samariterin-zur-struktur-der_1dnbad9iq_p-194_1fcfsnmp4 Die gute Samariterin. Zur Struktur der Supererogation, p. 194, by Wessels, Ulla 2002 Sigma-8 Graph Hexadecagon
http://purl.org/lg/diagrams/strobino-et-al-_2016_the-logic-of-modality_1e49redpe_p-356_1gan2tqb2 The Logic of Modality, p. 356, by Strobino, Riccardo; Thom, Paul 2016 Sigma-8 Graph Octagon
http://purl.org/lg/diagrams/strobino_2018_ibn-sina-s-logic_1e1fq0pq0__1gan3hisa Ibn Sina's Logic, online, by Strobino, Riccardo 2018 Sigma-8 Graph Octagon
↑ Back to top ↑