You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (1 to 25 of 2123)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/drago_2008_the-square-of-opposition-and-the-four_1e0ifus3i_p-136_1ecmotaiu The Square of Opposition and the Four Fundamental Choices, p. 136, by Drago, Antonino 2008 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/wolenski_2006_a-generalization-of-hume-s-thesis_1dndp1uhd_p-112_1edu186ds A Generalization of Hume's Thesis, p. 112, by Woleński, Jan 2006 Sigma-4 Graph 4–16 Square
http://purl.org/lg/diagrams/amgoud-et-al-_2017_foundations-for-a-logic-of_1dnl9d8o4_p-193_1eheh2jf9 Foundations for a logic of arguments, p. 193, by Amgoud, Leila; Besnard, Philippe; Hunter, Anthony 2017 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/schuyler_1869_the-principles-of-logic-for-high_1e5rs16th_p-96_1ehngdh9v The Principles of Logic, for High Schools and Colleges, p. 96, by Schuyler, Aaron 1869 Sigma-4 Graph 4–16 Octagon
http://purl.org/lg/diagrams/mackie_1958_-this-as-a-singular-quantifier_1dr1ahdn9_p-525_1ecpn80kn 'This' as a Singular Quantifier, p. 525, by Mackie, J. L. 1958 Sigma-7 Ladder 8 Square
http://purl.org/lg/diagrams/novak-et-al-_2019_a-formal-model-of-the_1e46ge37q_p-440_1eh5cihlm A Formal Model of the Intermediate Quantifiers "A Few", "Several" and "A Little", p. 440, by Novák, Vilém; Murinová, Petra 2019 Sigma-7 Ladder 8 Rectangle
http://purl.org/lg/diagrams/johnson_1921_logic-part-i_1drva2njf_p-142_1eag5in2f Logic. Part I, p. 142, by Johnson, W. E. 1921 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/dopp_1949_lecons-de-logique-formelle-premiere_1drvd0qab_p-128_1ec4sij6p Leçons de logique formelle. Première partie. Logique ancienne - la logique des jugements prédicatifs, p. 128, by Dopp, Joseph 1949 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/dopp_1960_formal-logic_1drvd55ad_p-141_1ec56rg22 Formal Logic, p. 141, by Dopp, Joseph; Ramirez, J. Roland E. (trans.); Sweeney, Robert D. (trans.) 1960 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/keynes_1906_studies-and-exercises-in-formal-logic_1drvcsdkg_p-144_1eca9nhr2 Studies and Exercises in Formal Logic (Fourth Edition), p. 144, by Keynes, J. N. 1906 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/keynes_1894_studies-and-exercises-in-formal-logic_1drvcfk8m_p-113_1ecac8hm5 Studies and Exercises in Formal Logic (Third Edition), p. 113, by Keynes, J. N. 1894 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/hacker_1975_the-octagon-of-opposition_1dqne7cf5_p-353_1ecb5eveo The octagon of opposition, p. 353, by Hacker, Edward A. 1975 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/thompson_1982_syllogisms-using-few-many-and-most_1e49qmufg_p-77_1ed3eso05 Syllogisms Using "Few", "Many", and "Most", p. 77, by Thompson, Bruce 1982 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/castro-manzano_2019_an-intermediate-term-functor_1e418pm8q_p-21_1edpouikg An intermediate term functor logic, p. 21, by Castro-Manzano, José Martín 2019 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/jacquette_2012_thinking-outside-the-square-of_1dvf8tgcb_p-88_1eead1pq5 Thinking Outside the Square of Opposition Box, p. 88, by Jacquette, Dale 2012 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-248_1eeg6pc3a Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 248, by Cavaliere, Ferdinando 2012 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/libert_2012_hypercubes-of-duality_1dvfalq81_p-297_1eei8fc6m Hypercubes of Duality, p. 297, by Libert, Thierry 2012 Keynes-Johnson Sigma-4 7 Rectangular Cuboid
http://purl.org/lg/diagrams/lenzen_2012_how-to-square-knowledge-and-belief_1dvfao1oa_p-310_1eeiisrsf How to Square Knowledge and Belief, p. 310, by Lenzen, Wolfgang 2012 Sigma-6 Ladder 7 Rectangle
http://purl.org/lg/diagrams/amgoud-et-al-_2013_a-formal-concept-view-of_1e45so9pc_p-9_1ehn8hfbq A Formal Concept View of Abstract Argumentation, p. 9, by Amgoud, Leila; Prade, Henri 2013 Keynes-Johnson Sigma-4 7 Cube
http://purl.org/lg/diagrams/ciucci-et-al-_2015_structures-of-opposition-in_1dogsttbb_p-5_1ep99kasg Structures of Opposition in Fuzzy Rough Sets, p. 5, by Ciucci, Davide; Dubois, Didier; Prade, Henri 2015 Keynes-Johnson Sigma-4 7 Cube
http://purl.org/lg/diagrams/de-laguna_1912_opposition-and-the-syllogism_1e41aisr7_p-395_1eqvmb4pa Opposition and the Syllogism, p. 395, by de Laguna, Theodore 1912 Keynes-Johnson Sigma-4 7 Square
http://purl.org/lg/diagrams/dubois-et-al-_2014_possibilistic-logic-an-overview_1dvuln4j2_p-292_1f1sdp0fs Possibilistic Logic - An Overview, p. 292, by Dubois, Didier; Prade, Henri 2014 Keynes-Johnson Sigma-4 7 Cube
http://purl.org/lg/diagrams/moktefi-et-al-_2012_a-history-of-logic-diagrams_1dvul9osv_p-615_1f2c995c2 A History of Logic Diagrams, p. 615, by Moktefi, Amirouche; Shin, Sun-Joo 2012 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/read_2012_the-medieval-theory-of-consequence_1dr1j0ap3_p-910_1e8v7rig0 The medieval theory of consequence, p. 910, by Read, Stephen 2012 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/johnson_1921_logic-part-i_1drva2njf_p-145_1eag5mfrv Logic. Part I, p. 145, by Johnson, W. E. 1921 Non-Sigma 6 Pentagon
↑ Back to top ↑