You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (1 to 25 of 5387)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-309_1i5ivel8l The Geometry of Logical Opposition, p. 309, by Moretti, Alessio 2009 Traditional Aristotelian Graph (Sigma) 22 Octagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-309_1i5ivuk8j The Geometry of Logical Opposition, p. 309, by Moretti, Alessio 2009 Traditional Aristotelian Graph (Sigma) 22 Octagon
http://purl.org/lg/diagrams/pizzi_2004_cotenability-and-the-logic-of_1dr1k81io_p-576_1facm85oh Cotenability and the Logic of Consequential Implication, p. 576, by Pizzi, Claudio 2004 Sigma-5 Graph 4–32 Three Dimensional Shape
http://purl.org/lg/diagrams/drago_2008_the-square-of-opposition-and-the-four_1e0ifus3i_p-136_1ecmotaiu The Square of Opposition and the Four Fundamental Choices, p. 136, by Drago, Antonino 2008 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/wolenski_2006_a-generalization-of-hume-s-thesis_1dndp1uhd_p-112_1edu186ds A Generalization of Hume's Thesis, p. 112, by Woleński, Jan 2006 Sigma-4 Graph 4–16 Square
http://purl.org/lg/diagrams/amgoud-et-al-_2017_foundations-for-a-logic-of_1dnl9d8o4_p-193_1eheh2jf9 Foundations for a logic of arguments, p. 193, by Amgoud, Leila; Besnard, Philippe; Hunter, Anthony 2017 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/schuyler_1869_the-principles-of-logic-for-high_1e5rs16th_p-96_1ehngdh9v The Principles of Logic, for High Schools and Colleges, p. 96, by Schuyler, Aaron 1869 Sigma-4 Graph 4–16 Octagon
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-323_1ekhe53h3 Generalization and Composition of Modal Squares of Oppositions, p. 323, by Pizzi, Claudio 2016 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-323_1ekhek74m Generalization and Composition of Modal Squares of Oppositions, p. 323, by Pizzi, Claudio 2016 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-323_1ekhg4pis Generalization and Composition of Modal Squares of Oppositions, p. 323, by Pizzi, Claudio 2016 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/smessaert-et-al-_2017_duality-patterns-in-2-pcd_1dnpb972e_p-255_1ga0uj2h0 Duality Patterns in 2-PCD Fragments, p. 255, by Smessaert, Hans; Demey, Lorenz 2017 Sigma-4 Graph 4–16 Octagon
http://purl.org/lg/diagrams/demey_2012_algebraic-aspects-of-duality-diagrams_1en20asmo_p-302_1hlae9p72 Algebraic Aspects of Duality Diagrams, p. 302, by Demey, Lorenz 2012 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/demey_2012_algebraic-aspects-of-duality-diagrams_1en20asmo_p-302_1hlaeql90 Algebraic Aspects of Duality Diagrams, p. 302, by Demey, Lorenz 2012 Non-Sigma 4–16 Tetrahedron
http://purl.org/lg/diagrams/pizzi_2009_the-problem-of-existential-import-in_1dve6fkv1_p-141_1fauppbj2 The Problem of Existential Import in First-Order Consequential Logics, p. 141, by Pizzi, Claudio 2009 Sigma-4 Graph 3–16 Cube
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-102_1g9hpi3dv Why the Logical Hexagon?, p. 102, by Moretti, Alessio 2012 Sigma-9 Clique 9–10 Heptagon
http://purl.org/lg/diagrams/pfeifer-et-al-_2005_towards-a-mental-probability_1dvqofdfs_p-94_1epm1l6ke Towards a Mental Probability Logic, p. 94, by Pfeifer, Niki; Kleiter, Gernot D. 2005 Non-Sigma 9 Rectangle
http://purl.org/lg/diagrams/boffa-et-al-_2021_graded-polygons-of-opposition-in_1f04u4e3v_p-131_1f0or11gl Graded polygons of opposition in fuzzy formal concept analysis, p. 131, by Boffa, Stefania; Murinová, Petra; Novák, Vilém 2021 Non-Sigma 9 Decagon
http://purl.org/lg/diagrams/boffa-et-al-_2021_graded-polygons-of-opposition-in_1f04u4e3v_p-143_1f0orq76c Graded polygons of opposition in fuzzy formal concept analysis, p. 143, by Boffa, Stefania; Murinová, Petra; Novák, Vilém 2021 Non-Sigma 9 Decagon
http://purl.org/lg/diagrams/boffa-et-al-_2021_graded-polygons-of-opposition-in_1f04u4e3v_p-149_1f0osc534 Graded polygons of opposition in fuzzy formal concept analysis, p. 149, by Boffa, Stefania; Murinová, Petra; Novák, Vilém 2021 Non-Sigma 9 Decagon
http://purl.org/lg/diagrams/boffa-et-al-_2021_graded-polygons-of-opposition-in_1f04u4e3v_p-151_1f0ouicq6 Graded polygons of opposition in fuzzy formal concept analysis, p. 151, by Boffa, Stefania; Murinová, Petra; Novák, Vilém 2021 Non-Sigma 9 Decagon
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-272_1i5320bia The Geometry of Logical Opposition, p. 272, by Moretti, Alessio 2009 Sigma-8 Clique 8–9 Tetradecagon
http://purl.org/lg/diagrams/mackie_1958_-this-as-a-singular-quantifier_1dr1ahdn9_p-525_1ecpn80kn 'This' as a Singular Quantifier, p. 525, by Mackie, J. L. 1958 Sigma-7 Ladder 8 Square
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-260_1i52u2qv4 The Geometry of Logical Opposition, p. 260, by Moretti, Alessio 2009 Sigma-7 Ladder 8 Rectangle
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-260_1i52u6ff6 The Geometry of Logical Opposition, p. 260, by Moretti, Alessio 2009 Sigma-7 Ladder 8 Rectangle
http://purl.org/lg/diagrams/moretti_2009_the-geometry-of-logical-opposition_1dnbb3upn_p-272_1i532njuu The Geometry of Logical Opposition, p. 272, by Moretti, Alessio 2009 8 Tetradecagon
↑ Back to top ↑