You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (4087 to 4111 of 5537)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-386_1eu1anfrl The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 386, by Robert, Serge; Brisson, Janie 2016 A Single PCD 2 Digon
http://purl.org/lg/diagrams/westerstahl_2016_generalized-quantifiers_1dve8d19l_p-218_1fa2tpaa5 Generalized quantifiers, p. 218, by Westerståhl, Dag 2016 Sigma-2 Graph 3–4 Square
http://purl.org/lg/diagrams/de-swart_2016_negation_1dve8eu02_p-469_1fa2u0upi Negation, p. 469, by de Swart, Henriëtte 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/macgregor_2016_the-neo-molinist-square-collapses-a_1dv1365if_p-198_1fakvus1k The Neo-Molinist Square Collapses: A Molinist Response to Elijah Hess, p. 198, by MacGregor, Kirk R. 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/macgregor_2016_the-neo-molinist-square-collapses-a_1dv1365if_p-206_1fal0ovvq The Neo-Molinist Square Collapses: A Molinist Response to Elijah Hess, p. 206, by MacGregor, Kirk R. 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/prade-et-al-_2016_on-different-ways-to-be-dis_1e46j9df0_p-614_1fansuqdg On Different Ways to be (dis)similar to Elements in a Set. Boolean Analysis and Graded Extension, p. 614, by Prade, Henri; Richard, Gilles 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/prade-et-al-_2016_on-different-ways-to-be-dis_1e46j9df0_p-614_1fant5el2 On Different Ways to be (dis)similar to Elements in a Set. Boolean Analysis and Graded Extension, p. 614, by Prade, Henri; Richard, Gilles 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/strobino-et-al-_2016_the-logic-of-modality_1e49redpe_p-354_1gan2bo39 The Logic of Modality, p. 354, by Strobino, Riccardo; Thom, Paul 2016 Non-Sigma Heptagon
http://purl.org/lg/diagrams/strobino-et-al-_2016_the-logic-of-modality_1e49redpe_p-356_1gan2tqb2 The Logic of Modality, p. 356, by Strobino, Riccardo; Thom, Paul 2016 Sigma-8 Graph Octagon
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5q605f Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5q8th4 Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5qdes9 Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5qkoq2 Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5qob8a Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5qsoo6 Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey-et-al-_2017_duality-in-logic-and-language_1dvfd7di1__1hl5r1drf Duality in Logic and Language, -, by Demey, Lorenz; Smessaert, Hans 2016 A Single PCD 2 Digon
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdigela Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Classical Sigma-7 4 Rhombic Dodecahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdisnf0 Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Classical Sigma-7 4 Rhombic Dodecahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdj3pp2 Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Moretti-Pellissier Sigma-4 4 Tetrahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdj8nmg Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Degenerate Sigma-3 with Unconnectedness 12 4 Octahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdk1p4c Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Contrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdk5sne Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Degenerate Sigma-3 with Unconnectedness 12 4 Octahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdkd9j4 Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Subcontrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdkgoul Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Contrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/smessaert-et-al-_2016_visualising-the-boolean_1dvfcrqh1_p-291_1hvdkjlo0 Visualising the Boolean Algebra $\mathbb{B}_4$ in 3D, p. 291, by Smessaert, Hans; Demey, Lorenz 2016 Degenerate Sigma-3 with Unconnectedness 12 4 Octahedron
↑ Back to top ↑