You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (26 to 50 of 5387)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef798bh No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Non-Sigma Triangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-210_1eef7t3dn No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 210, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-211_1eef8568i No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 211, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-211_1eef8am6f No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 211, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefj0mh6 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefjbap9 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefjh8qc No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefjm271 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-246_1eeg3qiea Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 246, by Cavaliere, Ferdinando 2012 Sigma-7 Graph Tetradecagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-247_1eeg43uhb Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 247, by Cavaliere, Ferdinando 2012 Sigma-7 Graph Rectangle
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-252_1eeg6vbmc Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 252, by Cavaliere, Ferdinando 2012 Sigma-9 Graph Rectangle
http://purl.org/lg/diagrams/kovac_2012_logical-opposition-and-collective_1dvfasujv_p-351_1eeltfueb Logical Opposition and Collective Decisions, p. 351, by Kovač, Srećko 2012 Non-Sigma Hexagon
http://purl.org/lg/diagrams/kovac_2012_logical-opposition-and-collective_1dvfasujv_p-351_1eeltj12g Logical Opposition and Collective Decisions, p. 351, by Kovač, Srećko 2012 Non-Sigma Hexagon
http://purl.org/lg/diagrams/kovac_2012_logical-opposition-and-collective_1dvfasujv_p-352_1eeltmgr6 Logical Opposition and Collective Decisions, p. 352, by Kovač, Srećko 2012 Non-Sigma Hexagon
http://purl.org/lg/diagrams/kovac_2012_logical-opposition-and-collective_1dvfasujv_p-353_1eeltookm Logical Opposition and Collective Decisions, p. 353, by Kovač, Srećko 2012 Non-Sigma Hexagon
http://purl.org/lg/diagrams/novak-et-al-_2019_a-formal-model-of-the_1e46ge37q_p-440_1eh5cihlm A Formal Model of the Intermediate Quantifiers "A Few", "Several" and "A Little", p. 440, by Novák, Vilém; Murinová, Petra 2019 Non-Sigma Rectangle
http://purl.org/lg/diagrams/chatti_2014_avicenna-on-possibility-and-necessity_1dnb487s7_p-345_1ehh506mv Avicenna on Possibility and Necessity, p. 345, by Chatti, Saloua 2014 Sigma-6 Graph Dodecagon
http://purl.org/lg/diagrams/chatti_2014_avicenna-on-possibility-and-necessity_1dnb487s7_p-349_1ehh56ha1 Avicenna on Possibility and Necessity, p. 349, by Chatti, Saloua 2014 Sigma-6 Graph Dodecagon
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-363_1ehq9u1t7 The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 363, by Campos Benítez, Juan Manuel 2014 Sigma-6 Graph Rectangle
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-365_1ehqa4an6 The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 365, by Campos Benítez, Juan Manuel 2014 Sigma-4 Graph Hexagon
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-365_1ehqacjrm The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 365, by Campos Benítez, Juan Manuel 2014 Non-Sigma Rectangle
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-365_1ehqc2ekv The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 365, by Campos Benítez, Juan Manuel 2014 Non-Sigma Rectangle
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-366_1ehqd6g1r The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 366, by Campos Benítez, Juan Manuel 2014 Sigma-4 Graph Rectangle
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-367_1ehqdmf90 The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 367, by Campos Benítez, Juan Manuel 2014 Sigma-4 Graph Rectangular Cuboid
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-321_1ekhagsck Generalization and Composition of Modal Squares of Oppositions, p. 321, by Pizzi, Claudio 2016 Sigma-4 Graph Cube
↑ Back to top ↑