You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (4510 to 4534 of 5537)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-9_1fb9pesrv An analogical hexagon, p. 9, by Beziau, Jean-Yves 2018 A Single PCD 2 Digon
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-9_1fb9q81jc An analogical hexagon, p. 9, by Beziau, Jean-Yves 2018 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-9_1fb9urbs1 An analogical hexagon, p. 9, by Beziau, Jean-Yves 2018 A Single PCD 2 Digon
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-9_1fb9v07jq An analogical hexagon, p. 9, by Beziau, Jean-Yves 2018 Contrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-9_1fb9v4nkp An analogical hexagon, p. 9, by Beziau, Jean-Yves 2018 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-10_1fbbiid1c An analogical hexagon, p. 10, by Beziau, Jean-Yves 2018 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-11_1fbbir2ve An analogical hexagon, p. 11, by Beziau, Jean-Yves 2018 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-12_1fbbjdtdh An analogical hexagon, p. 12, by Beziau, Jean-Yves 2018 Jacoby-Sesmat-Blanché Sigma-3 4 Hexagon
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-12_1fbbjj8m2 An analogical hexagon, p. 12, by Beziau, Jean-Yves 2018 Contrariety 3-clique 3–4 Triangle
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-13_1fbbjr35g An analogical hexagon, p. 13, by Beziau, Jean-Yves 2018 Contrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-10_1fbhiqjea An analogical hexagon, p. 10, by Beziau, Jean-Yves 2018 Non-Sigma 3 Triangle
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-11_1fbhjed9g An analogical hexagon, p. 11, by Beziau, Jean-Yves 2018 Non-Sigma 3 Triangle
http://purl.org/lg/diagrams/beziau_2018_an-analogical-hexagon_1dnla46ci_p-12_1fbhjjd84 An analogical hexagon, p. 12, by Beziau, Jean-Yves 2018 Non-Sigma 3 Triangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1325_1fbjia8dp Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1325, by Demey, Lorenz 2018 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1325_1fbjil5lu Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1325, by Demey, Lorenz 2018 Degenerate Sigma-2 with Unconnectedness 4 4 Rectangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1325_1fbjjjnfu Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1325, by Demey, Lorenz 2018 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1325_1fbjjpm14 Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1325, by Demey, Lorenz 2018 Jacoby-Sesmat-Blanché Sigma-3 4 Hexagon
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1325_1fbjjveib Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1325, by Demey, Lorenz 2018 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1330_1fbjrbltj Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1330, by Demey, Lorenz 2018 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1330_1fbjrnmlp Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1330, by Demey, Lorenz 2018 Degenerate Sigma-2 with Unconnectedness 4 4 Rectangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1330_1fbjrum93 Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1330, by Demey, Lorenz 2018 Jacoby-Sesmat-Blanché Sigma-3 3–4 Hexagon
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1334_1fbjsa65v Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1334, by Demey, Lorenz 2018 Degenerate Sigma-2 with Unconnectedness 4 4 Rectangle
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1334_1fbjslt50 Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1334, by Demey, Lorenz 2018 Jacoby-Sesmat-Blanché Sigma-3 4 Hexagon
http://purl.org/lg/diagrams/demey_2018_computing-the-maximal-boolean_1dnckmej1_p-1334_1fbjss9ki Computing the maximal Boolean complexity of families of Aristotelian diagrams, p. 1334, by Demey, Lorenz 2018 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/demey-et-al-_2018_combinatorial-bitstring_1dnpb4avm_p-330_1fbm1fue2 Combinatorial Bitstring Semantics for Arbitrary Logical Fragments, p. 330, by Demey, Lorenz; Smessaert, Hans 2018 Classical Sigma-2 3 Rectangle
↑ Back to top ↑