You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (3975 to 3999 of 5537)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-323_1ekhek74m Generalization and Composition of Modal Squares of Oppositions, p. 323, by Pizzi, Claudio 2016 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-323_1ekhg4pis Generalization and Composition of Modal Squares of Oppositions, p. 323, by Pizzi, Claudio 2016 Sigma-4 Graph 4–16 Cube
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-322_1ekhjtl1v Generalization and Composition of Modal Squares of Oppositions, p. 322, by Pizzi, Claudio 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-322_1ekhk3at3 Generalization and Composition of Modal Squares of Oppositions, p. 322, by Pizzi, Claudio 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-322_1ekhk7umm Generalization and Composition of Modal Squares of Oppositions, p. 322, by Pizzi, Claudio 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-322_1ekhkbqur Generalization and Composition of Modal Squares of Oppositions, p. 322, by Pizzi, Claudio 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-322_1ekhkfrm7 Generalization and Composition of Modal Squares of Oppositions, p. 322, by Pizzi, Claudio 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/pizzi_2016_generalization-and-composition-of-modal_1dr1kgqqd_p-322_1ekhkk9tn Generalization and Composition of Modal Squares of Oppositions, p. 322, by Pizzi, Claudio 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/lepage_2016_a-square-of-oppositions-in_1dr4eess2_p-335_1eldtde5g A Square of Oppositions in Intuitionistic Logic with Strong Negation, p. 335, by Lepage, François 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/lepage_2016_a-square-of-oppositions-in_1dr4eess2_p-335_1eldtmkk3 A Square of Oppositions in Intuitionistic Logic with Strong Negation, p. 335, by Lepage, François 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/lepage_2016_a-square-of-oppositions-in_1dr4eess2_p-336_1eldu5vtt A Square of Oppositions in Intuitionistic Logic with Strong Negation, p. 336, by Lepage, François 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/lepage_2016_a-square-of-oppositions-in_1dr4eess2_p-336_1eldud32s A Square of Oppositions in Intuitionistic Logic with Strong Negation, p. 336, by Lepage, François 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/lepage_2016_a-square-of-oppositions-in_1dr4eess2_p-337_1elduk00m A Square of Oppositions in Intuitionistic Logic with Strong Negation, p. 337, by Lepage, François 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-219_1elf9cedp Singular Propositions, Negation and the Square of Opposition, p. 219, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-220_1elfamcuu Singular Propositions, Negation and the Square of Opposition, p. 220, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Sherwood-Czeżowski Sigma-3 4 Hexagon
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-221_1elfaqlar Singular Propositions, Negation and the Square of Opposition, p. 221, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Sherwood-Czeżowski Sigma-3 4 Hexagon
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-226_1elfb13c6 Singular Propositions, Negation and the Square of Opposition, p. 226, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-227_1elfbahcn Singular Propositions, Negation and the Square of Opposition, p. 227, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-228_1elfbe66n Singular Propositions, Negation and the Square of Opposition, p. 228, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Non-Sigma Triangle
http://purl.org/lg/diagrams/choudhury-et-al-_2016_singular-propositions_1dnchgq5o_p-229_1elg40b6r Singular Propositions, Negation and the Square of Opposition, p. 229, by Choudhury, Lopamudra; Chakraborty, Mihir Kumar 2016 Non-Sigma 3 Pentagon
http://purl.org/lg/diagrams/wybraniec-skardowska_2016_logical-squares-for_1dqn9k7u6_p-294_1em1d9tri Logical Squares for Classical Logic Sentences, p. 294, by Wybraniec-Skardowska, Urszula 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/wybraniec-skardowska_2016_logical-squares-for_1dqn9k7u6_p-295_1em1gs73l Logical Squares for Classical Logic Sentences, p. 295, by Wybraniec-Skardowska, Urszula 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/wybraniec-skardowska_2016_logical-squares-for_1dqn9k7u6_p-295_1em1h9ks3 Logical Squares for Classical Logic Sentences, p. 295, by Wybraniec-Skardowska, Urszula 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/wybraniec-skardowska_2016_logical-squares-for_1dqn9k7u6_p-295_1em1hdmo3 Logical Squares for Classical Logic Sentences, p. 295, by Wybraniec-Skardowska, Urszula 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/wybraniec-skardowska_2016_logical-squares-for_1dqn9k7u6_p-295_1em21qru9 Logical Squares for Classical Logic Sentences, p. 295, by Wybraniec-Skardowska, Urszula 2016 Classical Sigma-2 3 Square
↑ Back to top ↑