You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (3777 to 3801 of 5537)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/gifford_2014_all-bar-one-the-problem-of-the-many_1dr1jegri_p-453_1ga3sf8so All Bar One. The Problem of the Many, p. 453, by Gifford, Christopher S. 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/gifford_2014_all-bar-one-the-problem-of-the-many_1dr1jegri_p-458_1ga3tu7ik All Bar One. The Problem of the Many, p. 458, by Gifford, Christopher S. 2014 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/gifford_2014_all-bar-one-the-problem-of-the-many_1dr1jegri_p-460_1ga3u6t6r All Bar One. The Problem of the Many, p. 460, by Gifford, Christopher S. 2014 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/gifford_2014_all-bar-one-the-problem-of-the-many_1dr1jegri_p-465_1ga3um1eu All Bar One. The Problem of the Many, p. 465, by Gifford, Christopher S. 2014 Classical Sigma-2 3 Hexagon
http://purl.org/lg/diagrams/demey-et-al-_2014_logische-meetkunde-en-pragmatiek_1dve9sb03_p-553_1hl5renvu Logische geometrie en pragmatiek, p. 553, by Demey, Lorenz; Smessaert, Hans 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/kelley_2014_the-art-of-reasoning-an-introduction_1e41v898i_p-155_1huotou1b The Art of Reasoning. An Introduction to Logic and Critical Thinking, p. 155, by Kelley, David 2014 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/kelley_2014_the-art-of-reasoning-an-introduction_1e41v898i_p-157_1huotto2s The Art of Reasoning. An Introduction to Logic and Critical Thinking, p. 157, by Kelley, David 2014 Degenerate Sigma-2 with Unconnectedness 4 4 Rectangle
http://purl.org/lg/diagrams/kelley_2014_the-art-of-reasoning-an-introduction_1e41v898i_p-160_1huou2ct0 The Art of Reasoning. An Introduction to Logic and Critical Thinking, p. 160, by Kelley, David 2014 Degenerate Sigma-2 with Unconnectedness 4 4 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-24_1i3s7u82n The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 24, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-24_1i3s852jk The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 24, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-25_1i3s89nbb The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 25, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-25_1i3s8div3 The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 25, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-25_1i3s8i27v The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 25, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-26_1i3s8m2sm The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 26, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-28_1i3s8rp51 The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 28, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-2_1i3vrsanc The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 2, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-23_1i3vs24o3 The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 23, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/horn_2014_the-singular-square-contrariety-and_1ehk6ml8h_p-24_1i3vs78jn The Singular Square: Contrariety and Double Negation from Aristotle to Homer, p. 24, by Horn, Laurence 2014 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/favaro_2015_the-particular-negative-a_1e4k5vao2_p-123_1ecs234d6 The Particular Negative: A Distributional Study on Some Aspects of Meaning Contradicting Logical Equivalence, p. 123, by Favaro, Alessandro 2015 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/beziau_2015_round-squares-are-no-contradictions_1dvfb2duu_p-45_1edm8f602 Round Squares Are No Contradictions (Tutorial on Negation Contradiction and Opposition), p. 45, by Beziau, Jean-Yves 2015 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/beziau_2015_round-squares-are-no-contradictions_1dvfb2duu_p-51_1edm8ro0u Round Squares Are No Contradictions (Tutorial on Negation Contradiction and Opposition), p. 51, by Beziau, Jean-Yves 2015 Béziau Sigma-4 4 Octagon
http://purl.org/lg/diagrams/hess_2015_arguing-from-molinism-to-neo-molinism_1dv11cdii_p-332_1ep8up4ol Arguing from Molinism to Neo-Molinism, p. 332, by Hess, Elijah 2015 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/hess_2015_arguing-from-molinism-to-neo-molinism_1dv11cdii_p-340_1ep8v9tq6 Arguing from Molinism to Neo-Molinism, p. 340, by Hess, Elijah 2015 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/ciucci-et-al-_2015_structures-of-opposition-in_1dogsttbb_p-3_1ep990cbb Structures of Opposition in Fuzzy Rough Sets, p. 3, by Ciucci, Davide; Dubois, Didier; Prade, Henri 2015 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/ciucci-et-al-_2015_structures-of-opposition-in_1dogsttbb_p-4_1ep999fmi Structures of Opposition in Fuzzy Rough Sets, p. 4, by Ciucci, Davide; Dubois, Didier; Prade, Henri 2015 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
↑ Back to top ↑