You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (3232 to 3256 of 3313)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/geudens-et-al-_2022_the-modal-logic-of-john-fabri_1g2hvr6vl_p-80_1g7mmfr55 The Modal Logic of John Fabri of Valenciennes (c. 1500). A Study in Token-Based Semantics, p. 80, by Geudens, Christophe; Demey, Lorenz 2022 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/geudens-et-al-_2022_the-modal-logic-of-john-fabri_1g2hvr6vl_p-81_1g7mmjmjd The Modal Logic of John Fabri of Valenciennes (c. 1500). A Study in Token-Based Semantics, p. 81, by Geudens, Christophe; Demey, Lorenz 2022 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/moretti_2012_why-the-logical-hexagon_1dnb5eltt_p-71_1g7ohpqcp Why the Logical Hexagon?, p. 71, by Moretti, Alessio 2012 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/demey_2019_boolean-considerations-on-john-buridan_1dnckvck5_p-120_1g8ljr2sc Boolean considerations on John Buridan's octagons of opposition, p. 120, by Demey, Lorenz 2019 Buridan Sigma-4 6 Octagon
http://purl.org/lg/diagrams/demey_2019_boolean-considerations-on-john-buridan_1dnckvck5_p-121_1g8lkcefo Boolean considerations on John Buridan's octagons of opposition, p. 121, by Demey, Lorenz 2019 Buridan Sigma-4 4–6 Octagon
http://purl.org/lg/diagrams/demey_2019_boolean-considerations-on-john-buridan_1dnckvck5_p-127_1g8loc259 Boolean considerations on John Buridan's octagons of opposition, p. 127, by Demey, Lorenz 2019 Buridan Sigma-4 6 Octagon
http://purl.org/lg/diagrams/read_2015_introduction_1e1qv4a4a_p-33_1gaec27il Introduction, p. 33, by Read, Stephen 2015 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/read_2015_introduction_1e1qv4a4a_p-39_1gaecegpf Introduction, p. 39, by Read, Stephen 2015 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/read_2015_introduction_1e1qv4a4a_p-40_1gaeco6tm Introduction, p. 40, by Read, Stephen 2015 Buridan Sigma-4 6 Rectangle
http://purl.org/lg/diagrams/tricot_1930_traite-de-logique-formelle_1gak7jnrh_p-169_1gak9r3h4 Traité de Logique Formelle, p. 169, by Tricot, Jules 1930 Buridan Sigma-4 6 Octagon
http://purl.org/lg/diagrams/johnson_1921_logic-part-i_1drva2njf_p-142_1eag5in2f Logic. Part I, p. 142, by Johnson, W. E. 1921 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/dopp_1949_lecons-de-logique-formelle-premiere_1drvd0qab_p-128_1ec4sij6p Leçons de logique formelle. Première partie. Logique ancienne - la logique des jugements prédicatifs, p. 128, by Dopp, Joseph 1949 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/dopp_1960_formal-logic_1drvd55ad_p-141_1ec56rg22 Formal Logic, p. 141, by Dopp, Joseph; Ramirez, J. Roland E. (trans.); Sweeney, Robert D. (trans.) 1960 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/keynes_1906_studies-and-exercises-in-formal-logic_1drvcsdkg_p-144_1eca9nhr2 Studies and Exercises in Formal Logic (Fourth Edition), p. 144, by Keynes, J. N. 1906 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/keynes_1894_studies-and-exercises-in-formal-logic_1drvcfk8m_p-113_1ecac8hm5 Studies and Exercises in Formal Logic (Third Edition), p. 113, by Keynes, J. N. 1894 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/hacker_1975_the-octagon-of-opposition_1dqne7cf5_p-353_1ecb5eveo The octagon of opposition, p. 353, by Hacker, Edward A. 1975 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/thompson_1982_syllogisms-using-few-many-and-most_1e49qmufg_p-77_1ed3eso05 Syllogisms Using "Few", "Many", and "Most", p. 77, by Thompson, Bruce 1982 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/castro-manzano_2019_an-intermediate-term-functor_1e418pm8q_p-21_1edpouikg An intermediate term functor logic, p. 21, by Castro-Manzano, José Martín 2019 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/jacquette_2012_thinking-outside-the-square-of_1dvf8tgcb_p-88_1eead1pq5 Thinking Outside the Square of Opposition Box, p. 88, by Jacquette, Dale 2012 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-248_1eeg6pc3a Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 248, by Cavaliere, Ferdinando 2012 Non-Sigma 7 Rectangle
http://purl.org/lg/diagrams/libert_2012_hypercubes-of-duality_1dvfalq81_p-297_1eei8fc6m Hypercubes of Duality, p. 297, by Libert, Thierry 2012 Keynes-Johnson Sigma-4 7 Rectangular Cuboid
http://purl.org/lg/diagrams/lenzen_2012_how-to-square-knowledge-and-belief_1dvfao1oa_p-310_1eeiisrsf How to Square Knowledge and Belief, p. 310, by Lenzen, Wolfgang 2012 Sigma-6 Ladder 7 Rectangle
http://purl.org/lg/diagrams/amgoud-et-al-_2013_a-formal-concept-view-of_1e45so9pc_p-9_1ehn8hfbq A Formal Concept View of Abstract Argumentation, p. 9, by Amgoud, Leila; Prade, Henri 2013 Keynes-Johnson Sigma-4 7 Cube
http://purl.org/lg/diagrams/demey-et-al-_2016_metalogical-decorations-of_1dnpb0l3b_p-269_1ejfrt6bo Metalogical Decorations of Logical Diagrams, p. 269, by Demey, Lorenz; Smessaert, Hans 2016 Keynes-Johnson Sigma-4 7 Octagon
http://purl.org/lg/diagrams/demey-et-al-_2016_metalogical-decorations-of_1dnpb0l3b_p-280_1ek72b3nt Metalogical Decorations of Logical Diagrams, p. 280, by Demey, Lorenz; Smessaert, Hans 2016 Keynes-Johnson Sigma-4 7 Rectangular Cuboid
↑ Back to top ↑