You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (3054 to 3078 of 5537)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-167_1eedrv6gm Oppositions and Opposites, p. 167, by Schang, Fabien 2012 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-167_1eeds646q Oppositions and Opposites, p. 167, by Schang, Fabien 2012 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-202_1eedu8ooo No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 202, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-202_1eedueqb7 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 202, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-202_1eedujm9h No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 202, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-204_1eedurq77 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 204, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-205_1eef48f44 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 205, by Mélès, Baptiste 2012 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-205_1eef4ebjt No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 205, by Mélès, Baptiste 2012 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-205_1eef4j9eq No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 205, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-206_1eef4uen5 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 206, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-206_1eef54t87 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 206, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef6h0oq No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef6lgte No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Non-Sigma Triangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef798bh No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Non-Sigma Triangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-208_1eef7gso1 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 208, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-210_1eef7t3dn No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 210, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-211_1eef8568i No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 211, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-211_1eef8am6f No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 211, by Mélès, Baptiste 2012 Non-Sigma Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-211_1eef8frh6 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 211, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-212_1eef91lj6 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 212, by Mélès, Baptiste 2012 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefbgner No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/d-alfonso_2012_the-square-of-opposition-and_1dvf9r6pr_p-223_1eefgs7gr The Square of Opposition and Generalized Quantifiers, p. 223, by D'Alfonso, Duilio 2012 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/d-alfonso_2012_the-square-of-opposition-and_1dvf9r6pr_p-223_1eefh3bc7 The Square of Opposition and Generalized Quantifiers, p. 223, by D'Alfonso, Duilio 2012 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefj0mh6 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Non-Sigma Square
http://purl.org/lg/diagrams/meles_2012_no-group-of-opposition-for-constructive_1dvf9gqvq_p-213_1eefjbap9 No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases, p. 213, by Mélès, Baptiste 2012 Non-Sigma Square
↑ Back to top ↑