You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (2521 to 2545 of 3227)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-7_1et07fqkn The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 7, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Classical Sigma-2 3 Octagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-7_1et07qdkc The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 7, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-8_1et3pl94k The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 8, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Buridan Sigma-4 4 Octagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-9_1et93glok The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 9, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Degenerate Sigma-2 with Unconnectedness 4 4 Octagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-9_1et93mjo6 The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 9, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Degenerate Sigma-2 with Unconnectedness 4 4 Square
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-10_1et943sgf The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 10, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Dodecagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-10_1et948m8j The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 10, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-11_1et96a8j5 The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 11, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Sigma-5 Graph Dodecagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-11_1et96jv9v The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 11, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Sigma-5 Graph Decagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-11_1et96rhk4 The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 11, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Degenerate Sigma-3 with Unconnectedness 4 4 Dodecagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-11_1et970s6q The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 11, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Degenerate Sigma-3 with Unconnectedness 4 4 Hexagon
http://purl.org/lg/diagrams/jaspers-et-al-_2016_the-square-of-opposition-in_1drvbapoe_p-13_1et978ekj The Square of Opposition in Catholic hands: a chapter in the history of 20th-century logic, p. 13, by Jaspers, Dany; Seuren, Pieter A. M. 2016 Non-Sigma 3 Kite
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-385_1eu18h7f0 The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 385, by Robert, Serge; Brisson, Janie 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-385_1eu18nckt The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 385, by Robert, Serge; Brisson, Janie 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-389_1eu19baji The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 389, by Robert, Serge; Brisson, Janie 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-389_1eu19gr06 The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 389, by Robert, Serge; Brisson, Janie 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-386_1eu1a0g23 The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 386, by Robert, Serge; Brisson, Janie 2016 Sigma-0 Graph 1 Digon
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-386_1eu1a59tr The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 386, by Robert, Serge; Brisson, Janie 2016 A Single PCD 2 Digon
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-386_1eu1a9tou The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 386, by Robert, Serge; Brisson, Janie 2016 A Single PCD 2 Digon
http://purl.org/lg/diagrams/robert-et-al-_2016_the-klein-group-squares-of_1e4975h90_p-386_1eu1anfrl The Klein Group, Squares of Opposition and the Explanation of Fallacies in Reasoning, p. 386, by Robert, Serge; Brisson, Janie 2016 A Single PCD 2 Digon
http://purl.org/lg/diagrams/westerstahl_2016_generalized-quantifiers_1dve8d19l_p-218_1fa2tpaa5 Generalized quantifiers, p. 218, by Westerståhl, Dag 2016 Sigma-2 Graph 3–4 Square
http://purl.org/lg/diagrams/de-swart_2016_negation_1dve8eu02_p-469_1fa2u0upi Negation, p. 469, by de Swart, Henriëtte 2016 Classical Sigma-2 3 Square
http://purl.org/lg/diagrams/macgregor_2016_the-neo-molinist-square-collapses-a_1dv1365if_p-198_1fakvus1k The Neo-Molinist Square Collapses: A Molinist Response to Elijah Hess, p. 198, by MacGregor, Kirk R. 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/macgregor_2016_the-neo-molinist-square-collapses-a_1dv1365if_p-206_1fal0ovvq The Neo-Molinist Square Collapses: A Molinist Response to Elijah Hess, p. 206, by MacGregor, Kirk R. 2016 Classical Sigma-2 3 Rectangle
http://purl.org/lg/diagrams/prade-et-al-_2016_on-different-ways-to-be-dis_1e46j9df0_p-614_1fansuqdg On Different Ways to be (dis)similar to Elements in a Set. Boolean Analysis and Graded Extension, p. 614, by Prade, Henri; Richard, Gilles 2016 Jacoby-Sesmat-Blanché Sigma-3 3 Hexagon
↑ Back to top ↑