You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

How to Square Knowledge and Belief (2012), p. 310
by Lenzen, Wolfgang

Caption

Doxastic square of opposition

Logic

Aristotelian family
Lenzen Sigma-4
Boolean complexity
5
Number of labels per vertex (at most)
1
Uniqueness of the vertices up to logical equivalence
Yes
Errors in the diagram
No

Geometry

Shape
Rectangle (irregular)
Colinearity range
0
Coplanarity range
2
Cospatiality range
0
Representation of contradiction
By central symmetry

Graph structure

$B(a,p)$
  • Implicit contradiction with $\neg B(a,p)$
  • Implicit contrariety with $C(a,\neg p)$
  • Implicit contrariety with $B(a,\neg p)$
  • Implicit subcontrariety with $\neg C(a,p)$
  • Subalternation from $C(a,p)$
  • Implicit subalternation to $\neg C(a,\neg p)$
  • Subalternation to $\neg B(a,\neg p)$
$C(a,p)$
  • Implicit contradiction with $\neg C(a,p)$
  • Implicit contrariety with $\neg B(a,p)$
  • Implicit contrariety with $C(a,\neg p)$
  • Implicit contrariety with $B(a,\neg p)$
  • Subalternation to $B(a,p)$
  • Implicit subalternation to $\neg C(a,\neg p)$
  • Implicit subalternation to $\neg B(a,\neg p)$
$\neg C(a,\neg p)$
  • Implicit contradiction with $C(a,\neg p)$
  • Implicit subcontrariety with $B(a,\neg p)$
  • Implicit subcontrariety with $\neg B(a,p)$
  • Implicit subcontrariety with $\neg C(a,p)$
  • Implicit subalternation from $C(a,p)$
  • Implicit subalternation from $B(a,p)$
  • Subalternation from $\neg B(a,\neg p)$
$\neg C(a,p)$
  • Implicit contradiction with $C(a,p)$
  • Implicit subcontrariety with $B(a,p)$
  • Implicit subcontrariety with $\neg B(a,\neg p)$
  • Implicit subcontrariety with $\neg C(a,\neg p)$
  • Implicit subalternation from $C(a,\neg p)$
  • Subalternation from $\neg B(a,p)$
  • Implicit subalternation from $B(a,\neg p)$
$B(a,\neg p)$
  • Implicit contradiction with $\neg B(a,\neg p)$
  • Implicit contrariety with $B(a,p)$
  • Implicit contrariety with $C(a,p)$
  • Implicit subcontrariety with $\neg C(a,\neg p)$
  • Subalternation from $C(a,\neg p)$
  • Subalternation to $\neg B(a,p)$
  • Implicit subalternation to $\neg C(a,p)$
$\neg B(a,p)$
  • Implicit contradiction with $B(a,p)$
  • Implicit contrariety with $C(a,p)$
  • Implicit subcontrariety with $\neg B(a,\neg p)$
  • Implicit subcontrariety with $\neg C(a,\neg p)$
  • Subalternation from $B(a,\neg p)$
  • Implicit subalternation from $C(a,\neg p)$
  • Subalternation to $\neg C(a,p)$
$\neg B(a,\neg p)$
  • Implicit contradiction with $B(a,\neg p)$
  • Implicit contrariety with $C(a,\neg p)$
  • Implicit subcontrariety with $\neg C(a,p)$
  • Implicit subcontrariety with $\neg B(a,p)$
  • Subalternation from $B(a,p)$
  • Implicit subalternation from $C(a,p)$
  • Subalternation to $\neg C(a,\neg p)$
$C(a,\neg p)$
  • Implicit contradiction with $\neg C(a,\neg p)$
  • Implicit contrariety with $C(a,p)$
  • Implicit contrariety with $B(a,p)$
  • Implicit contrariety with $\neg B(a,\neg p)$
  • Implicit subalternation to $\neg B(a,p)$
  • Implicit subalternation to $\neg C(a,p)$
  • Subalternation to $B(a,\neg p)$

Vertex description

Conceptual info
No
Mnemonic support (AEIO, purpurea ...)
No
Form
none
Label type
symbolic
Symbolic field
logic
Contains partial formulas or symbols
No
Logical system
epistemic logic

Edge description

Contains definitions of relations
No
Form
solid lines
,
none
Has arrowheads
Yes
Overlap
No
Curved
No
Hooked
No
As wide as vertices
No
Contains text
No
Label type
none

Style

Diagram is colored
No
Diagram is embellished
No
↑ Back to top ↑