Copyright according to our policy
Caption
- Doxastic square of opposition
Logic
- Aristotelian family
- Lenzen Sigma-4
- Boolean complexity
- 5
- Number of labels per vertex (at most)
- 1
- Uniqueness of the vertices up to logical equivalence
- Yes
- Errors in the diagram
- No
Geometry
- Shape
- Rectangle (irregular)
- Colinearity range
- 0
- Coplanarity range
- 2
- Cospatiality range
- 0
- Representation of contradiction
- By central symmetry
Graph structure
-
$B(a,p)$
- Implicit contradiction with $\neg B(a,p)$
- Implicit contrariety with $C(a,\neg p)$
- Implicit contrariety with $B(a,\neg p)$
- Implicit subcontrariety with $\neg C(a,p)$
- Subalternation from $C(a,p)$
- Implicit subalternation to $\neg C(a,\neg p)$
- Subalternation to $\neg B(a,\neg p)$
$C(a,p)$
- Implicit contradiction with $\neg C(a,p)$
- Implicit contrariety with $\neg B(a,p)$
- Implicit contrariety with $C(a,\neg p)$
- Implicit contrariety with $B(a,\neg p)$
- Subalternation to $B(a,p)$
- Implicit subalternation to $\neg C(a,\neg p)$
- Implicit subalternation to $\neg B(a,\neg p)$
$\neg C(a,\neg p)$
- Implicit contradiction with $C(a,\neg p)$
- Implicit subcontrariety with $B(a,\neg p)$
- Implicit subcontrariety with $\neg B(a,p)$
- Implicit subcontrariety with $\neg C(a,p)$
- Implicit subalternation from $C(a,p)$
- Implicit subalternation from $B(a,p)$
- Subalternation from $\neg B(a,\neg p)$
$\neg C(a,p)$
- Implicit contradiction with $C(a,p)$
- Implicit subcontrariety with $B(a,p)$
- Implicit subcontrariety with $\neg B(a,\neg p)$
- Implicit subcontrariety with $\neg C(a,\neg p)$
- Implicit subalternation from $C(a,\neg p)$
- Subalternation from $\neg B(a,p)$
- Implicit subalternation from $B(a,\neg p)$
$B(a,\neg p)$
- Implicit contradiction with $\neg B(a,\neg p)$
- Implicit contrariety with $B(a,p)$
- Implicit contrariety with $C(a,p)$
- Implicit subcontrariety with $\neg C(a,\neg p)$
- Subalternation from $C(a,\neg p)$
- Subalternation to $\neg B(a,p)$
- Implicit subalternation to $\neg C(a,p)$
$\neg B(a,p)$
- Implicit contradiction with $B(a,p)$
- Implicit contrariety with $C(a,p)$
- Implicit subcontrariety with $\neg B(a,\neg p)$
- Implicit subcontrariety with $\neg C(a,\neg p)$
- Subalternation from $B(a,\neg p)$
- Implicit subalternation from $C(a,\neg p)$
- Subalternation to $\neg C(a,p)$
$\neg B(a,\neg p)$
- Implicit contradiction with $B(a,\neg p)$
- Implicit contrariety with $C(a,\neg p)$
- Implicit subcontrariety with $\neg C(a,p)$
- Implicit subcontrariety with $\neg B(a,p)$
- Subalternation from $B(a,p)$
- Implicit subalternation from $C(a,p)$
- Subalternation to $\neg C(a,\neg p)$
$C(a,\neg p)$
- Implicit contradiction with $\neg C(a,\neg p)$
- Implicit contrariety with $C(a,p)$
- Implicit contrariety with $B(a,p)$
- Implicit contrariety with $\neg B(a,\neg p)$
- Implicit subalternation to $\neg B(a,p)$
- Implicit subalternation to $\neg C(a,p)$
- Subalternation to $B(a,\neg p)$
Vertex description
- Conceptual info
- No
- Mnemonic support (AEIO, purpurea ...)
- No
- Form
- none
- Label type
- symbolic
- Symbolic field
- logic
- Contains partial formulas or symbols
- No
- Logical system
- epistemic logic
Edge description
- Contains definitions of relations
- No
- Form
- solid lines
, - none
- Has arrowheads
- Yes
- Overlap
- No
- Curved
- No
- Hooked
- No
- As wide as vertices
- No
- Contains text
- No
- Label type
- none
Style
- Diagram is colored
- No
- Diagram is embellished
- No