You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Was Lewis Carroll an Amazing Oppositional Geometer? (2014), p. 401
by Moretti, Alessio

Caption

From the Carrollian cube (a 4-opposition) emerges a tetrahexahedron (its closure).

Logic

Aristotelian family
Sigma-5 Graph
Boolean complexity
4
Number of labels per vertex (at most)
2
Equivalence between (some) labels of the same vertex
Yes
Analogy between (some) labels of the same vertex
No
Uniqueness of the vertices up to logical equivalence
Yes
Errors in the diagram
No

Geometry

Shape
Three Dimensional Shape (irregular)
Colinearity range
0
Coplanarity range
0
Cospatiality range
0
Representation of contradiction
By central symmetry

Vertex description

Conceptual info
No
Mnemonic support (AEIO, purpurea ...)
No
Form
dots
Label type
symbolic
Symbolic field
logic
Contains partial formulas or symbols
Yes
Logical system
predicate logic

Edge description

Style

Diagram is colored
Yes
Diagram is embellished
No
Tags
existential import

Additional notes

From the CO-perspective, this is a C4O1 diagram. (Two strong JSB sigma-3's that are intertwined with each other.)

Consider the following partition:
1) A! (all x are y, and there is at least one x)
2) I $\wedge$ O (some x are y and some x are not y)
3) E! (no x are y, and there is at least one x)
4) there are no x

With the bitstrings based on this partition, the formulas of this diagram (in Greek notation) can be represented as follows:

1000 = $ \alpha\beta\delta $
0100 = $ \alpha\beta\gamma $
0010 = $ \alpha\gamma\delta $
0001 = $ \beta\gamma\delta $
1100 = $ \alpha\beta $
1010 = $ \alpha\delta$
1001 = $ \beta\delta $
0110 = $ \alpha\gamma $
0101 = $ \beta\gamma $
0011 = $ \gamma\delta $
1110 = $ \alpha $
1101 = $ \beta $
1011 = $ \delta $
0111 = $ \gamma $

Note: $\alpha\beta$ means $\alpha\wedge\beta$ (cf. p. 391).
↑ Back to top ↑