You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Theophrastische Modallogik (1969), p. 74
by Lorenzen, Paul

Logic

Aristotelian family
Non-Sigma
Boolean complexity
4
Number of labels per vertex (at most)
1
Uniqueness of the vertices up to logical equivalence
Yes
Errors in the diagram
No

Geometry

Shape
Rectangle (irregular)
Colinearity range
0–1
Coplanarity range
3
Cospatiality range
0
Representation of contradiction
N.A.

Vertex description

Conceptual info
No
Mnemonic support (AEIO, purpurea ...)
No
Form
none
Label type
symbolic
Symbolic field
logic
Contains partial formulas or symbols
Yes
Logical system
modal logic

Edge description

Style

Diagram is colored
No
Diagram is embellished
No

Additional notes

$\triangle p$ = it is necessary that $p$ (cf. p. 72).
$\triangledown p$ = it is possible that $p$ (cf. p. 73).
$\mathsf{X} p$ = it is true that $p$ (cf. p. 74).
$\hat{\times} p$ = $\mathsf{X}p \wedge \neg\triangle p$ (cf. p. 74).
$\diamond p$ = $\triangledown p \wedge \neg\triangle p$ (cf. p. 74).

The negation closure of this diagram is a sigma-6 diagram.
↑ Back to top ↑