You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

# Logik im Recht. Grundlagen und Anwendungsbeispiele (2010), p. 310 by Joerden, Jan C.

### Caption

Sechseck der Verbote und ihrer Negationen, die sich auf die Transformationen des Wechsels beziehen

### Logic

Aristotelian family
Boolean complexity
3
Number of labels per vertex (at most)
1
Uniqueness of the vertices up to logical equivalence
Yes
Errors in the diagram
Yes

### Geometry

Shape
Hexagon (regular)
Colinearity range
0
Coplanarity range
0
Cospatiality range
0
By central symmetry

### Vertex description

Conceptual info
No
Mnemonic support (AEIO, purpurea ...)
No
Form
none
Label type
symbolic
Symbolic field
logic
Contains partial formulas or symbols
No
Logical system
deontic logic

### Edge description

Contains definitions of relations
No
Form
dotted lines
,
solid lines
,
dashed lines
Yes
Overlap
No
Curved
No
Hooked
No
As wide as vertices
No
Contains text
No
Label type
none

### Style

Diagram is colored
No
Diagram is embellished
No
Tags
Boolean closed

* given the subalternation from V(bT$\neg$b) to $\neg$V($\neg$bTb), it follows that there is a contrariety between V(bT$\neg$b) and V($\neg$bTb), so the upper horizontal line should be a dashed line to indicate this contrariety (rather than the current solid line)
* given the subalternation from V(bT$\neg$b) to $\neg$V($\neg$bTb), it follows that there is a subcontrariety between $\neg$V($\neg$bTb) and $\neg$V(bT$\neg$b), so the lower horizontal line should be a dotted line to indicate this subcontrariety (rather than the current solid line)