You're using an ancient browser to surf the modern web. Please update to the latest version (and don't use Internet Explorer!).

Leonardi.DB
a logical geometry project

Diagrams (2495 to 2519 of 2520)

Searching for diagrams matching all criteria ...

Diagram Source Date
(min⁠–⁠max)
Aristotelian Family
B.C.
(min⁠–⁠max)
Geometric Shape
http://purl.org/lg/diagrams/campos-benitez_2014_the-medieval-octagon-of_1dnb4njvk_p-363_1ehq9u1t7 The Medieval Octagon of Opposition for Sentences with Quantified Predicates, p. 363, by Campos Benítez, Juan Manuel 2014 Sigma-6 Graph Rectangle
http://purl.org/lg/diagrams/chatti_2016_les-oppositions-modales-dans-la_1e1p71eee_p-19_1en6jpmre Les Oppositions Modales dans la Logique d'Al Fārābi, p. 19, by Chatti, Saloua 2016 Sigma-6 Graph Rectangle
http://purl.org/lg/diagrams/chatti_2016_les-oppositions-modales-dans-la_1e1p71eee_p-25_1en6keho0 Les Oppositions Modales dans la Logique d'Al Fārābi, p. 25, by Chatti, Saloua 2016 Sigma-6 Graph Octagon
http://purl.org/lg/diagrams/bochenski_1947_la-logique-de-theophraste_1dqncsc42_p-93_1ep98822k La logique de Théophraste, p. 93, by Bocheński, Jozef 1947 Sigma-6 Graph Dodecagon
http://purl.org/lg/diagrams/lenzen_2012_how-to-square-knowledge-and-belief_1dvfao1oa_p-310_1eeiisrsf How to Square Knowledge and Belief, p. 310, by Lenzen, Wolfgang 2012 Sigma-6 Ladder 7 Rectangle
http://purl.org/lg/diagrams/luzeaux-et-al-_2008_logical-extensions-of_1dv12vgm7_p-184_1ecku6vh5 Logical Extensions of Aristotle's Square, p. 184, by Luzeaux, Dominique; Sallantin, Jean; Dartnell, Christopher 2008 Sigma-7 Graph Decagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-246_1eeg3qiea Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 246, by Cavaliere, Ferdinando 2012 Sigma-7 Graph Tetradecagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-247_1eeg43uhb Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 247, by Cavaliere, Ferdinando 2012 Sigma-7 Graph Rectangle
http://purl.org/lg/diagrams/mackie_1958_-this-as-a-singular-quantifier_1dr1ahdn9_p-525_1ecpn80kn 'This' as a Singular Quantifier, p. 525, by Mackie, J. L. 1958 Sigma-7 Ladder 8 Square
http://purl.org/lg/diagrams/novak-et-al-_2019_a-formal-model-of-the_1e46ge37q_p-440_1eh5cihlm A Formal Model of the Intermediate Quantifiers "A Few", "Several" and "A Little", p. 440, by Novák, Vilém; Murinová, Petra 2019 Sigma-7 Ladder 8 Rectangle
http://purl.org/lg/diagrams/philipps_2012_von-deontischen-quadraten-kuben_1eal76p65_p-79_1eb12177b Von deontischen Quadraten - Kuben - Hyperkuben, p. 79, by Philipps, Lothar 2012 Sigma-8 Graph Three Dimensional Shape
http://purl.org/lg/diagrams/philipps_2012_von-deontischen-quadraten-kuben_1eal76p65_p-80_1eb127og7 Von deontischen Quadraten - Kuben - Hyperkuben, p. 80, by Philipps, Lothar 2012 Sigma-8 Graph Square
http://purl.org/lg/diagrams/garcia-cruz_2017_aristotelian-relations-in-pdl-the_1dnch8op5_p-411_1eu1cukef Aristotelian Relations in PDL: The Hypercube of Dynamic Oppositions, p. 411, by García-Cruz, José David 2017 Sigma-8 Graph Hexadecagon
http://purl.org/lg/diagrams/garcia-cruz_2017_aristotelian-relations-in-pdl-the_1dnch8op5_p-409_1eu1dhono Aristotelian Relations in PDL: The Hypercube of Dynamic Oppositions, p. 409, by García-Cruz, José David 2017 Sigma-8 Graph Cube
http://purl.org/lg/diagrams/wessels_2002_die-gute-samariterin-zur-struktur-der_1dnbad9iq_p-194_1fcfsnmp4 Die gute Samariterin. Zur Struktur der Supererogation, p. 194, by Wessels, Ulla 2002 Sigma-8 Graph Hexadecagon
http://purl.org/lg/diagrams/cavaliere_2012_fuzzy-syllogisms-numerical-square_1dvfa2l7t_p-252_1eeg6vbmc Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence, p. 252, by Cavaliere, Ferdinando 2012 Sigma-9 Graph Rectangle
http://purl.org/lg/diagrams/chatti_2016_les-oppositions-modales-dans-la_1e1p71eee_p-24_1en6k1iag Les Oppositions Modales dans la Logique d'Al Fārābi, p. 24, by Chatti, Saloua 2016 Sigma-9 Graph Octagon
http://purl.org/lg/diagrams/angot-pellissier_2008_-setting-n-opposition_1dr1l86qf_p-237_1eddqc9fa "Setting" n-Opposition, p. 237, by Pellissier, Régis 2008 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/beziau_2012_the-new-rising-of-the-square-of_1dvf8i5fn_p-9_1ee7mrcj7 The New Rising of the Square of Opposition, p. 9, by Beziau, Jean-Yves 2012 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/schang_2012_oppositions-and-opposites_1dvf9cage_p-149_1eeco7j3r Oppositions and Opposites, p. 149, by Schang, Fabien 2012 Subcontrariety 3-clique 3 Triangle
http://purl.org/lg/diagrams/johnson_1921_logic-part-i_1drva2njf_p-31_1eag4m3jf Logic. Part I, p. 31, by Johnson, W. E. 1921 Subcontrariety 4-clique 4 Square
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-394_1eihllapj Was Lewis Carroll an Amazing Oppositional Geometer?, p. 394, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Tetrahedron
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-393_1eimnse5u Was Lewis Carroll an Amazing Oppositional Geometer?, p. 393, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Triangle
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-393_1eimo01vk Was Lewis Carroll an Amazing Oppositional Geometer?, p. 393, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Triangle
http://purl.org/lg/diagrams/moretti_2014_was-lewis-carroll-an-amazing_1dnb55618_p-393_1eimo3l3a Was Lewis Carroll an Amazing Oppositional Geometer?, p. 393, by Moretti, Alessio 2014 Subcontrariety 4-clique 4 Tetrahedron
↑ Back to top ↑